Bachelors Level/First Year/First Semester/Science csit/first semester/mathematics i/syllabus wise questions

B.Sc Computer Science and Information Technology

Institute of Science and Technology, TU

Mathematics I (MTH117)

Year Asked: 2074, syllabus wise question

Applications of Antiderivatives
1.
Find the Maclaurin series for $e^x$ and prove that it represents $e^x$ for all x. Define initial value problem. Solve that initial value problem of $y' + 5y = 1$, $y(0) = 2$. Find the volume of a sphere of radius r. [4+4+2]
Applications of Derivatives
1.
Verify Mean value theorem of $f(x) = x^3 - 3x + 3$ for [-1,2]. [5]
2.
Sketch the curve $y = x^3 + x$. [5]
3.
Find the length f the arc of the semicubical $y^2 = x^2$ between the points (1,1) and (4,8). [5]
4.
Find the extreme values of $f(x, y) = y^2 - x^2$. [5]
Derivatives
1.
Find the derivative of

$f(x) = \sqrt{x}$
State the domain of f. Estimate the area between the curve and the line x=0 and x=2 where curve is
$y^2 = x$
[3+2+5]
Function of One Variable
1.
A function is defined by

$f(x) = \begin{cases} x+2, & x<0 \\ 1-x, & x>0 \end{cases}$
Calculate f(-1), f(3), and sketch the graph. Prove that the limit does not exist.
$\lim_{x \to 0} \frac{|x|}{x}$
[5+0+5]
2.
If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{3-x}$, find $gof$ and $fog$. [5]
3.
Define limit of a function.

$\lim_{x \to \infty} \left({x - \sqrt{x}} \right)$
[5]
Infinite Sequence and Series
1.
For what values of x does the series converge?

$\sum_{n=1}^{\infty} \frac{(x-3)^n}{x}$
Calculate $\iint_{R} f(x, y) dA$, for $f(x, y) = 100 - 6x^2y$, and $R: 0 \leq x \leq 2, -1 \leq y \leq 1$. [5+5]
2.
Determine whether the integral is convergent or divergent.

$\int_1^{\infty} \frac{1}{x} dx$
[5]
3.
Test the convergence of the series

$\sum_{n=1}^{\infty} \frac{n^n}{n!}$
[5]
Limits and Continuity
1.
Use continuity to evaluate the limit,

$\lim_{x \to 4} \frac{5 + \sqrt{x}}{\sqrt{5 + x}}$
[5]
Ordinary Differential Equations
1.
Find the solution of $y'' + 6y' + 9 = 0$, $y(0) = 2$, $y'(0) = 1$. [5]
Plane and Space Vectors
1.
Define cross product of two vectors. If $\vec{a} = \hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{b} = 2\hat{i} + 7\hat{j} - 5\hat{k}$, find the vector $\vec{a} \times \vec{b}$ and $\vec{b} \times \vec{a}$. [5]