1.
Let T is a linear transformation. Find the standard matrix of T such that:
$T: \mathbb{R}^2 \to \mathbb{R}^4 \text{ by } T(\mathbf{e}_1) = (3,1,3,1),\ T(\mathbf{e}_2) = (-5,2,0,0) \text{ where } \mathbf{e}_1 = (1,0),\ \mathbf{e}_2 = (0,1)$
$T: \mathbb{R}^2 \to \mathbb{R}^4 \text{ rotates points about the origin through } \frac{3\pi}{4} \text{ radians counter clockwise}$
$T: \mathbb{R}^2 \to \mathbb{R}^4 \text{ is a vertical shear transformation that maps } \mathbf{e}_1 \text{ into } \mathbf{e}_1 - 2\mathbf{e}_2 \text{ but leaves } \mathbf{e}_2 \text{ unchanged}$
[10]