1.
Define linear transformation with an example. Let
$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix},\ v = \begin{bmatrix} 2 \\ -1 \end{bmatrix},\ b = \begin{bmatrix} 3 \\ 2 \\ 4 \end{bmatrix},\ x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
and define a transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(x) = Ax$ then
a. find $T(v)$
b. find $x \in \mathbb{R}^2$ whose image under $T$ is $b$ [10+0]