Bachelors Level/First Year/Second Semester/Science csit/second semester/mathematics ii/syllabus wise questions

B.Sc Computer Science and Information Technology

Institute of Science and Technology, TU

Mathematics II (MTH168)

Year Asked: 2078, syllabus wise question

Eigenvalues and Eigen Vectors
1.
Find the eigen value of

$\begin{bmatrix} 3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2 \end{bmatrix}$
[5]
Groups and Subgroups
1.
Let an operation $*$ be defined on $\mathbb{Q}^+$ by $a * b = \frac{ab}{2}$. Then show that $\mathbb{Q}^+$ forms a group. [5]
Linear Equations in Linear Algebra
1.
Define system of linear equations. When a system of equation is consistent? Determine if the system is consistent:

$-2x_1 - 3x_2 + 4x_3 = 5$

$x_2 - 2x_3 = 4$

$x_1 + 3x_2 - x_3 = 2$
[10]
Matrix Algebra
1.
Find the LU factorization of

$\begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ -4 & -5 & 3 & -8 & 1 \\ 2 & -5 & -4 & 1 & 8 \\ -6 & 0 & 7 & -3 & 1 \end{bmatrix}$
[10]
2.
If $A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$, find a formula for $A^n$, where $A = PDP^{-1}$, $P = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}$ and $D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$ [5]
Orthogonality and Least Squares
1.
Find a least square solution of the inconsistent system $Ax = b$ for

$A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix},\ b = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix}$
[10]
Rings and Fields
1.
Define ring and show that set of real numbers with respect to addition and multiplication operation is a ring. [5]
Transformation
1.
Define linear transformation with an example. Let

$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix},\ v = \begin{bmatrix} 2 \\ -1 \end{bmatrix},\ b = \begin{bmatrix} 3 \\ 2 \\ 4 \end{bmatrix},\ x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
and define a transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(x) = Ax$ then a. find $T(v)$ b. find $x \in \mathbb{R}^2$ whose image under $T$ is $b$ [10+0]
2.
Let $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by $T(x) = Ax$, find the image under $T$ of

$u = \begin{bmatrix} 1 \\ -3 \end{bmatrix},\ v = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$
[5]
Vector Space Continued
1.
Define null space of a matrix $A$. Let

$A = \begin{bmatrix} -1 & -3 & 2 \\ 5 & -9 & 1 \end{bmatrix},\ v = \begin{bmatrix} 5 \\ -3 \\ -2 \end{bmatrix}$
Then show that $v$ is in the null $A$. [5+0]
Vector Spaces
1.
Determine the column of the matrix $A$ are linearly independent, where

$A = \begin{bmatrix} 0 & 1 & 4 \\ 1 & 2 & -1 \\ 5 & 8 & 0 \end{bmatrix}$
[5]
2.
When two column vector in $\mathbb{R}^2$ are equal? Give an example. Compute $u + 3v$, $u - 2v$, where

$u = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix},\ v = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$
[5]
3.
Find a unit vector $v$ of $u = (1, -2, 2, 3)$ in the direction of $u$. [5]
4.
Prove that the two vectors $u$ and $v$ are perpendicular to each other if and only if the line through $u$ is perpendicular bisector of the line segment from $-u$ to $v$. [5]
5.
Verify that $1k, (-2^k), 3k$ are linearly independent signals. [5]