1.
Define linear transformation with an example. Let
$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix},\ v = \begin{bmatrix} 2 \\ -1 \end{bmatrix},\ b = \begin{bmatrix} 3 \\ 2 \\ 4 \end{bmatrix},\ x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
$\text{and define a transformation } \mathbf{T}: \mathbb{R}^2 \to \mathbb{R}^2 \text{ by } T(x) = Ax \text{ then}$
$a.\ \text{find } T(v)$
$b.\ \text{find } x \in \mathbb{R}^2 \text{ whose image under } T \text{ is } b$
[10]